L'innovation scientifique japonaise contribue à un meilleur futur pour l'humanité

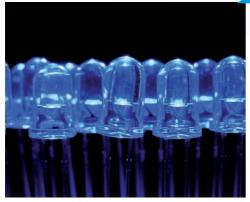
Des inventions révolutionnaires

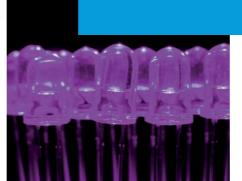
La batterie au Lithium-Ion

Contribution à la mise en pratique des appareils mobiles, qui ont révolutionné les modes de vie

Une batterie légère et ultraperformante, surpassant de loin toutes celles existantes :

- A permis la large expansion des appareils mobiles, à commencer par le téléphone portable
- Permettra plus de développements dans le futur, dont celui de la voiture électrique





Dr. Akira YOSHINO

PRIX NOBEL DE CHIMIE 2019

La diode électroluminescente (LED) bleue

Pr. Isamu AKASAKI Pr. Hiroshi AMANO Pr. Shuji NAKAMURA PRIX NOBEL DE PHYSIQUE 2014

Contribution à l'économie d'énergie, grâce à l'émission d'une

- « lumière » ultra-performante
- Les appareils lumineux utilisant la LED bleue consomment seulement 1/8° de l'énergie de ceux à ampoule à incandescence (54W > 7W)
- L'amélioration du GaN (composant de la LED bleue) a permis d'utiliser les semi-conducteurs de puissance, pour augmenter la puissance et réduire la taille des transformateurs électriques
- Participation à l'économie d'énergie et à la réduction des émissions de gaz à effet de serre

Bloqueur PD-1 : un nouveau traitement contre le cancer centré sur les capacités immunitaires

Pr. Tasuku HONJO
PRIX NOBEL DE
PHYSIOLOGIE OU
MÉDECINE 2018

Contribution au traitement du cancer

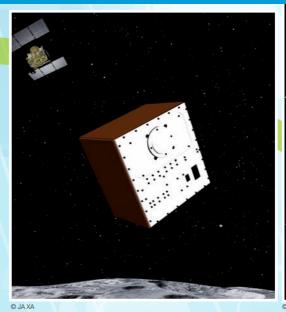
- Le Prof. HONJO fut le premier bénéficiaire de la bourse du HFSP, en 1990
- En s'intéressant à l'immunité (pouvoir inné du corps à combattre les maladies); il a isolé « PD-1 », la protéine qui restreint les fonctions immunitaires dans le cas du cancer, et pu ainsi mettre au point un traitement d'importance historique
- Contribution particulièrement importante, dans un monde où l'on prévoit que la moitié de l'humanité mourra, à l'avenir, d'un cancer
- A apporté de l'espoir aux malades qui n'avaient jusqu'alors aucune méthode de traitement

Cellule Tc (Lymphocyte T cytotoxique) Récepteur des cellules T PD-L1 Bloqueur PD-1 Redicament empêche le combinaison) Redicament empêche le combinaison)

Cellule cancéreuse

Cellule cancéreuse

© Honjo Lab. Kyoto University

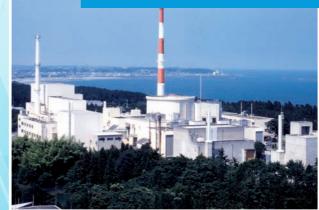

La coopération scientifique entre la France et le Japon

Alimente le progrès de la science dans le monde

Coopération spatiale

Collaboration sur l'astéroïde Ryugu par la sonde japonaise HAYABUSA 2 et l'atterrisseur MASCOT.

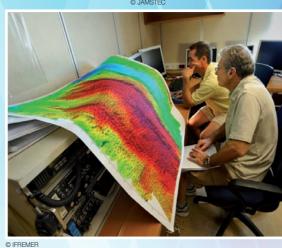
Le projet ITER




Une collaboration internationale pour construire la première centrale d'énergie de fusion de grande échelle accueillie par la France.

Coopération dans le domaine de la recherche nucléaire

Accueil de chercheurs au centre de recherche international CLADS, et recherches collaboratives fondées sur un accord entre JAEA et CEA.



Océanographie

Collaboration de JAMSTEC, des universités, et de IFREMER, pour la recherche dans les domaines des technologies d'observation des océans, de la faune marine, et de l'étude de l'environnement marin.

30 ans de Human Frontier Science Program

Objectif:

Coopération internationale en finançant la recherche fondamentale dédiée à l'étude des mécanismes complexes des organismes vivants.

Collaborations internationales, et particulièrement intercontinentales

Asie-Pacifique et Amériques 11,4%

Asie-Pacifique, Europe et Amériques 19,1%

Asie-Pacifique et Europe 7,2%

Europe et Amériques 61,1%

Soutenir des scientifiques provenant de 70 pays

4109 scientifiques

1124 projets de recherches collaboratives

3238 jeunes chercheurs (post-doc)

